Arthur Weber

Arthur Weber

Senior Research Scientist

Disciplines: Chemistry

Degree/Major: Ph.D., Chemistry/Biology, 1973, University of Miami

Curriculum vitae: Weber-Art.pdf

aweber@seti.org
Biography

What were the chemical processes that started life on Earth? Biochemist Art Weber is trying to answer this question by studying prebiotically plausible chemical reactions in the lab – reactions that might have been responsible for biogenesis.

Art’s experiments have shown that sugars are unsurpassed in their ability to undergo spontaneous self-transformation reactions in water. Consequently, for the past decade he’s been investigating the prebiotic synthesis of sugars and their subsequent reactions in the presence of ammonia that yield a complex mixture of chemical products whose activities are essential to the origin of life, and even combine to form semi-solid microspherules that could have provided a primitive cell-like, catalytic environment. The ultimate goal of his research effort is to develop a model, self-replicating system that resembles the birth of life on Earth, and can be artificially evolved to a more dynamic and complex state.

Publications

Weber, A. L., and Fox, S. W. (1973) Aminoacylation and acetylaminoacylation of homopolyribonucleotides.Biochimica et Biophysica Acta319: 174-187.

White, W. E., Jr., Lacey, J. C., Jr., and Weber, A. L. (1973) Aminoacyl transfer from adenylate anhydride to the 2'-OH groups along the backbone of polyribonucleotides. Biochemical and Biophysical Research Communications51: 283-291.

Weber, A. L., and Lacey, J. C., Jr. (1974) Aminoacyl transfer: Peptide synthesis and other properties of an amino acid imidazolide. Biochimica et Biophysica Acta349: 226-234.

Lacey, J. C., Jr., Weber, A. L., and White, W. E., Jr. (1975) A model for the coevolution of the genetic code and the process of protein synthesis: Review and assessment. Origins of Life6: 273-283.

Weber, A. L., and Lacey, J. C., Jr. (1975) Aminoacyl transfer from an adenylate anhydride to polyribonucleotides.Journal of Molecular Evolution6: 309-320. 

Lacey, J. C., Jr., and Weber, A. L. (1976) The origin of the genetic code: An amino acid-anticodon relationship. In: Protein Structure and Evolution  (J. L. Fox, Z. Deyl, and A. Blazej, eds.), Marcel Dekker, New York, pp. 213-222.

Lacey, J. C., Jr., Weber, A. L., and Pruitt, K. M. (1976) The edge of evolution - A molecular historical perspective.  In The Encyclopaedia of Ignorance  (R. Duncan and M. Weston-Smith, eds.), Pergamon Press, Ltd., Oxford, England, pp. 219-223.

Lacey, J. C., Jr., and Weber, A. L. (1977) Genetic coding and protein synthesis: Concerted evolution.Precambrian Research5: 1-22.

Weber, A. L., Caroon, J. M., Warden, J. T., Lemmon, R. M., and Calvin, M. (1977) Simultaneous peptide and oligonucleotide formation in mixtures of amino acid, nucleoside triphosphate, imidazole and magnesium ion.BioSystems8: 277-286 

Weber, A. L., and Lacey, J. C., Jr. (1978) Genetic code correlations: Amino acids and their anticodon nucleotides. Journal of Molecular Evolution11: 199-210.

Weber, A. L., and Orgel, L. E. (1978) Amino acid activation with adenosine 5'-phosphorimidazolide. Journal of Molecular Evolution11: 9-168.

Weber, A. L., and Orgel, L. E. (1978) The formation of peptides from the 2'(3')-glycyl ester of a nucleotide.Journal of Molecular Evolution11: 189-198.

Weber, A. L., and Orgel, L. E. (1979) The formation of dipeptides from amino acids and the 2'(3') -glycyl ester of an adenylate. Journal of Molecular Evolution13: 185-192.

Weber, A. L., and Orgel, L. E. (1979) The formation of peptides from glycine thioesters. Journal of Molecular Evolution13: 193-202.

Weber, A. L., and Orgel, L. E. (1980) Poly(U)-directed peptide-bond formation from the 2'(3')-glycyl esters of adenosine derivatives. Journal of Molecular Evolution16: 1-10.

Weber, A. L. (1981) Formation of the thioester, N,S-diacetylcysteine, from acetaldehyde and N, N-diacetylcystine in aqueous solution with ultraviolet light. Journal of Molecular Evolution17: 103-107.

Weber, A.L. (1981) Formation of pyrophosphate, tripolyphosphate, and phosphorylimidazole with the thioester, N, S-diacetylcysteamine, as the condensing agent. Journal of Molecular Evolution18: 24-29. 

Weber, A. L., and Miller, S. L. (1981) Reasons for the occurrence of the twenty coded protein amino acids.Journal of Molecular Evolution17: 273-284.

Weber, A. L., and Orgel, L. E. (1981) The effect of poly(C) on the formation of peptide bonds from the 2'(3')-glycyl ester of a guanosine nucleotide. Journal of Molecular Evolution17: 190-191.

Weber, A. L. (1982) Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents.BioSystems15: 83-189.

Weber, A. L. (1982) Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. Journal of Molecular Evolution18: 354-359.

Weber, A. L. (1983) Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. Journal of Molecular Evolution19: 237-243.

Weber, A. L. (1984) Prebiotic formation of "energy-rich" thioesters from glyceraldehyde and N-acetylcysteine.Origins of Life1: 17-27.

Weber, A. L. (1984) Nonenzymatic formation of "energy-rich" lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol. Journal of Molecular Evolution20: 157-166.

Weber, A. L. (1985) Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution. Journal of Molecular Evolution21: 351-355.

Weber, A. L. (1987) The triose model: Glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions. Origins of Life17: 107-119 

Weber, A. L. (1987) Stereoselective formation of a 2'(3')-aminoacyl ester of a nucleotide. Journal of Molecular Evolution25: 7-11.

Weber, A. L. (1987) Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester. Journal of Molecular Evolution25: 191-196 

Weber, A. L. (1989) Thermal synthesis and hydrolysis of polyglyceric acid. Origins of Life and Evolution of the Biosphere19: 7-19.

Weber, A. L. (1989) Model of early self-replication based on covalent complementarity for a copolymer of glycerate-3-phosphate and glycerol-3-phosphate. Origins of Life and Evolution of the Biosphere19: 79-186.

Weber, A. L. and Hsu, V. (1990) Energy-rich glyceric acid oxygen esters: Implications for the origin of glycolysis.Origins of Life and Evolution of the Biosphere20: 145-150.

Weber, A. L. (1991) Origin of fatty acid synthesis: Thermodynamics and kinetics of reaction pathways. Journal of Molecular Evolution32: 93-100.

Weber, A. L. (1992) Book review of Chemical Evolution: Origins of the Elements, Molecules, and Living Systemsby Stephen F. Mason. Origins of Life and Evolution of the Biosphere21: 263.

Weber, A. L. (1992) Prebiotic sugar synthesis: Hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide. Journal of Molecular Evolution.35: 1-6. 

Weber, A. L. (1995) Prebiotic polymerization: Oxidative polymerization of 2,3-dimercapto-1-propanol on the surface of iron(III) hydroxide oxide. Origins of Life and Evolution of the Biosphere 25: 53-60.

Weber, A. L. (1995) A biochemical  magic  frequency  based  on  the  reduction  level  of biological carbon. In:Progress in the Search for Extraterrestrial Life (G. S. Shostak, ed.), Astronomical Society of the Pacific  (ASP Conference Series, vol. 74), San Francisco, pp. 479-485.

Weber, A. L. (1997) Energy from redox disproportionation of sugar carbon drives biotic and abiotic synthesis.Journal of Molecular Evolution44: 354-360.

 

Weber, A. L. (1997) Prebiotic amino acid thioester synthesis: Thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia. Origins of Life and Evolution of the Biosphere28: 259-270.

Weber, A. L. (2000) Sugars as the optimal biosynthetic carbon substrate of aqueous life throughout the Universe.Origins of Life and Evolution of the Biospher30: 33-43 

Weber, A. L. (2001) Sugar model of the origin of life: Catalysis by amines and amino acid products. Origins of Life and Evolution of the Biosphere31: 71-86.

Weber, A. L. (2001) The sugar model: Catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-L-lysine in a dialyzer. Origins of Life and Evolution of the Biospher31: 231-240.

Weber A. L. (2002) Chemical constraints governing the origin of metabolism: The thermodynamic landscape of carbon group transformations under mild aqueous conditions. Origins of Life and Evolution of the Biosphere, in press.

Weber, A. L. (2002) Chemical constraints governing the origin of metabolism: The thermodynamic landscape of carbon group transformations under mild aqueous conditions. Origins of Life and Evolution of the Biosphere, 32:333-357.

Pizzarello, S. P. and Weber, A. L. (2004) Prebiotic amino acids as asymmetric catalysts. Science303: 1151.

 Weber, A. L. (2004) Kinetics of organic transformations under mild aqueous conditions: implications for the origin of life and its metabolism. Origins of Life and Evolution of the Biosphere, in press. 

Weber, A. L. (2004) Aqueous synthesis of peptide thioesters from amino acids and a thiol using 1, 1’-carbonyldiimidazole. Origins of Life and Evolution of the Biosphere, accepted for publication.

Weber, A. L. 2004, Kinetics of Organic Transformations Under Mild Aqueous Conditions: Implications for the Origin of Life and Its Metabolism, Orig. Life Evol. Biosphere34, 473-495.

Weber, A. L. 2005, Aqueous Synthesis of Peptide Thioesters from Amino Acids and a Thiol Using 1, 1'-Carbonyldiimidazole, Orig. Life Evol. Biosphere35, 421-427.

Weber, A. L. 2005, Growth of Organic Microspherules in Sugar-Ammonia Reactions, Orig. Life Evol. Biosphere35, 523-536.

Weber, A. L. 2006, The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction, Orig. Life Evol. Biosphere, submitted.

Weber, A. L. and Sandra Pizzarello 2006, The peptide-catalyzed stereospecific synthesis of tetroses: A possible model for prebiotic molecular evolution, Proceedings of the National Academy of Sciences of the United States103:34, 12713-12717.

“A Re-appraisal of the Habitability of Planets Around M Dwarf Stars” 
J.C. Tarter, P.R. Backus, R.L. Mancinelli, J.M. Aurnou, D.E. Backman, G.S. Basri, A.P. Boss, A. Clarke, 
D. Deming, L.R. Doyle, E.D. Feigelson, F. Freund, D.H. Grinspoon, R.M. Haberle, S.A. Hauck, II, M.J. Heath, T.J. Henry, J.L. Hollingsworth, M.M. Joshi, S. Kilston, M.C. Liu, E. Meikle, I.N. Reid, L.J. Rothschild, J.M. Scalo, A. Segura, C.M. Tang, J.M. Tiedje, M.C. Turnbull, L.M. Walkowicz, A.L. Weber, and R.E. Young; Astrobiology, vol. 7, no. 1, 30-65, 2007.