Agata Zupanska

Agata Zupanska

Principal Investigator and Research Scientist

Disciplines: Space Biology, Molecular Biology, Gene Expression

Degree/Major: Ph.D., Molecular Biology, 2004, Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland

Curriculum vitae: A Zupanska_CV_Dec2021.pdf

azupanska@seti.org
Biography

Keen to understand how the universe works and where in the universe life has developed Dr. Agata Zupanska brings a biologist’s perspective: she tests the limits of terrestrial plant life and works on preparing plants for deep space human missions, all with a goal to advance deep space exploration in search of answers to our most profound questions.

Dr. Zupanska’s space biology research focuses on:

1.) to understand if life based on terran biomolecules could evolve in other parts of the universe, we need to test how the terrestrial biological systems perform in deep space.

2.) plants are vital to continued space exploration and eventual colonization by ensuring independence from Earth’s resources and performing essential roles (1. Bioregenerative Life Support Systems; 2. sustainable food source, nutrition supplementation and flavor enhancement; 3. Production of plant-based raw products; 4. Medicinal properties and drug manufacturing/production; 5. Oxygenation air-tight space vehicles, planetary settlements, and future atmospheres of terraformed outer planets; 6. Enrichment poor planetary regolith and breaking up toxic compounds). Plants incorporated into manned space missions must be tolerant of deep space. Since deep space environments are outside of plant evolutionarily experience, plants taken off the surface of the Earth, will likely need to be genetically engineered. To develop genetic approaches aimed toward augmenting plant tolerance of deep space, we need first to understand the effects of deep space environments on plant physiology, and to identify damage prevention and/or repair strategies in plants.

Dr. Zupanska is particularly interested in deep space environments of spaceflight microgravity and cosmic ionizing radiation originating from high-energy astrophysical events. In her microgravity research she uses the International Space Station (ISS) laboratory. To simulate deep space cosmic ionizing radiation, she uses exposures at NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to high and low energy particle beams: H, He, HZE ions to simulate Galactic Cosmic Rays (GCR) that arrive from supernovae of massive stars in the Milky Way or other galaxies, and H ions to simulate Solar Particle Events (SPE) from the Sun.

She currently collaborates with Dr. Stuart McDaniel from the University of Florida on the NASA sponsored spaceflight project using a non-vascular plant, moss Ceratodon purpureus that was previously collected from the region of high solar irradiance at Casey Bay station in Antarctica. Moss is an ideal candidate for human spaceflight missions due to its small size, lightweight spores, low maintenance and role in oxygenation, regolith enrichment, and medicine manufacturing. It shows remarkable tolerance of high levels of radiation here on Earth: is first to colonize sites with elevated ionizing particle levels such as those found at nuclear plant accident sites, atomic bomb test sites or radioactive element-rich regions, and grows in areas with high UVB photon levels such as polar regions subject to ozone holes. The moss dominant haploid phase allows direct forward genetic analysis. Also, moss was among the first organisms to colonize land habitats c.a. 470mln years ago and likely holds a wealth of information on the evolution of life on Earth.

In her spaceflight moss research Dr. Zupanska developed a unique experimental setup that distinguishes her studies from those of others: she exposes live moss to simulated cosmic ionizing radiation on the ground, keeps it in cold stowage and sequentially exposes it to spaceflight microgravity on the ISS. Most research uses dormant forms (spores, seeds) exposed to electromagnetic wave radiation from UVB, UVC, X-rays, and Gamma-rays delivered at a high-dose in a single pulse (acutely), while she uses live moss colonies and exposure to particulate radiation which best approximates deep space ionizing radiation. Most studies investigate a singular microgravity or singular radiation environment, while her study permits to look at the effects of these two environments in combination. Dr. Zupanska uses morphological metrics and whole genome gene expression profiling to understand the changes in moss physiology in these environments.

Links

Follow Dr. Zupanska on Twitter: @zupanska

Publications
  1. Shared Metabolic Remodeling Processes Characterize the Transcriptome of Arabidopsis thaliana within Various Suborbital Flight Environments Skewing-Associated Genes Impact the Spaceflight Response of Arabidopsis thaliana. Brandon Califar, Agata Zupanska, Jordan A. Callaham, Matthew T. Bamsey, Thomas Graham, Anna-Lisa Paul and Robert J. Ferl. Front Plant Sci. 2021 Jan 29; 9(1):13-29.(DOI: 10.2478/gsr-2021-0002) link: https://www.sciendo.com/article/10.2478/gsr-2021-0002 
  2. Root Skewing-Associated Genes Impact the Spaceflight Response of Arabidopsis thaliana. Brandon Califar, Natasha J. Sng, Agata K. Zupanska, Anna-Lisa Paul, Robert J. Ferl Front Plant Sci. 2020 Mar 4; 11, 239. (PMID: 32194611) https://pubmed.ncbi.nlm.nih.gov/32194611/
  3. HSFA2 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Agata K. Zupanska, Collin LeFrois, Robert J. Ferl, Anna-Lisa Paul IJMS Special Issue Adaptation of Living Organisms in Space: From Mammals to Plants. 2019 Jan 17: 20(2), 390:1-36. (PMID: 30658467) https://pubmed.ncbi.nlm.nih.gov/30658467/
  4. ARG1 functions in the physiological adaptation of undifferentiated plant cells to spaceflight. Agata K. Zupanska, Eric R. Schultz, JiQiang Yao, Natasha J. Sng, Mingqi Zhou, Jordan B. Callaham, Robert J. Ferl, Anna-Lisa Paul Astrobiology. 2017 Nov 17(11): 1077-1111. (PMID: 29088549) https://pubmed.ncbi.nlm.nih.gov/29088549/
  5. Patterns of Arabidopsis gene expression in the face of hypobaric stress. Anna-Lisa Paul,  Mingqi Zhou,  Jordan B. Callaham,  Matthew Reyes, Michael Stasiak,  Alberto Riva,  Agata K. Zupanska,  Mike A. Dixon, Robert J. Ferl AoB PLANTS. 2017 July 07: 9(4):1-19. https://academic.oup.com/aobpla/article/9/4/plx030/3934080
  6. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight? Anna-Lisa Paul, Natasha J. Sng, Agata K. Zupanska, Aparna Krishnamurthy, Eric R. Schultz, Robert J. Ferl PLoS One. 2017 Jun 29;12(6). (PMID: 28662188) https://pubmed.ncbi.nlm.nih.gov/28662188/
  7. Dissecting Low Atmospheric Pressure Stress: Transcriptome Responses to the Components of Hypobaria in Arabidopsis. Mingqi Zhou, Jordan B. Callaham, Matthew Reyes, Michael Stasiak, Alberto Riva, Agata Zupanska, Mike A. Dixon, Anna-Lisa Paul, Robert J. Ferl Front Plant Sci. 2017 Apr 10;8:528. (PMID: 28443120) https://pubmed.ncbi.nlm.nih.gov/28443120/
  8. Skewing in Arabidopsis roots involves disparate environmental signaling pathways. Eric R Schultz, Agata Zupanska, Anna-Lisa Paul, Robert J Ferl BMC Plant Biol. 2017 Feb 1;17(1):31. (PMID: 28143395) https://pubmed.ncbi.nlm.nih.gov/28143395/
  9. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. Paul AL, Zupanska AK, Schultz ER, Ferl RJBMC Plant Biol. 2013 Aug 7;13:112. (PMID: 23919896) https://pubmed.ncbi.nlm.nih.gov/23919896/
  10. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Zupanska AK, Denison FC, Ferl RJ, Paul AL, Am J Bot. 2013 Jan;100(1):235-48. (PMID: 23258370) https://pubmed.ncbi.nlm.nih.gov/23258370 
  11. Testing the Bio-compatibility of Aluminum PDFU BRIC Hardware. Eric R Schultz, Agata K Zupanska, Susan Manning-Roach, Jose Camacho, Howard Levine, Anna-Lisa Paul, Robert J Ferl Gravitational and Space Biology. 2012 Oct; 26(2):48-63. 
  12. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ Front Plant Sci. 2012 Aug;3;190:1-14. Hypothesis and Theory Article. (PMID: 22934100) https://pubmed.ncbi.nlm.nih.gov/22934100/
  13. Spaceflight transcriptomes: unique responses to a novel environment. Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ Astrobiology. 2012 Jan;12(1):40-56. (PMID: 22221117) https://pubmed.ncbi.nlm.nih.gov/22221117/
  14. 14-3-3 proteins in plant physiology. Denison FC, Paul AL, Zupanska AK, Ferl RJ Semin Cell Dev Biol. 2011 Sep;22(7):720-7.Review. (PMID: 21907297) https://pubmed.ncbi.nlm.nih.gov/21907297/
  15. Performance of KSC Fixation Tubes with RNALater for orbital experiments: a case study in ISS operations for molecular biology. Ferl RJ,  Zupanska A, Spinale  A, Reed  D,  Manning-Roach S, Guerra  G, Cox D, Paul A-L Adv Space Res. 2011 Jul;48(1):199-206.
  16. Universal primers suitable to assess population dynamics reveal apparent mutually exclusive transcription of the Babesia bovis ves1alpha gene. Zupańska AK, Drummond PB, Swetnam DM, Al-Khedery B, Allred DR Mol Biochem Parasitol. 2009 Jul;166(1):47-53. (PMID: 19428672) https://pubmed.ncbi.nlm.nih.gov/19428672/
  17. Alternative pathway of transcriptional induction of p21WAF1/Cip1 by cyclosporine A in p53-deficient human glioblastoma cells. Zupanska A, Adach A, Dziembowska M, Kaminska B Cell Signal. 2007 Jun;19(6):1268-78. (PMID: 17321721) https://pubmed.ncbi.nlm.nih.gov/17321721/
  18. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor beta signal transduction in human glioblastoma cells. Dziembowska M, Danilkiewicz M, Wesolowska A, Zupanska A, Chouaib S, Kaminska B Biochem Biophys Res Commun. 2007 Mar 23;354(4):1101-6. (PMID: 17276399) https://pubmed.ncbi.nlm.nih.gov/17276399/
  19. Cyclosporine a induces growth arrest or programmed cell death of human glioma cells. Zupanska A, Dziembowska M, Ellert-Miklaszewska A, Gaweda-Walerych K, Kaminska B Neurochem Int. 2005 Nov;47(6):430-41. (PMID: 16087277) https://pubmed.ncbi.nlm.nih.gov/16087277/
  20. The diversity of p53 mutations among human brain tumors and their functional consequences. Zupanska A, Kaminska B Neurochem Int. 2002 Jun;40(7):637-45. Review. (PMID: 11900859) https://pubmed.ncbi.nlm.nih.gov/11900859/
Related projects